Agenda

- Supervised Learning
 - Regression
 - Least Mean Square
 - Classification
 - Probability
Regression

- Given 15 fishes: weight and prices
- Objective: Predict the price of a fish

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>31</td>
</tr>
<tr>
<td>1.2</td>
<td>16.5</td>
</tr>
<tr>
<td>0.7</td>
<td>10</td>
</tr>
</tbody>
</table>

The ith training sample: $(x^{(i)}, y^{(i)})$

- $x^{(i)} = [x_1^{(i)}, x_2^{(i)}, ..., x_d^{(i)}]^T \in X$: Feature vector
 - $x_j^{(i)}$: the jth feature
- X: the input space
- $y^{(i)} \in Y$: Label / Target
 - Y: the output space

Training set: $\{(x^{(i)}, y^{(i)}) | i = 1...n\}$

- n is the number of training samples
Regression

- Train a function $h_\theta(x)$ to predict y
 - θ is the parameter vectors (e.g. weight)
 - $h_\theta: X \rightarrow Y$, mapping from X to Y
 - h_θ is called a predictor or hypothesis

- Objective: Build a “good” h_θ
 - What does “good” mean?

Objective Function

- Objective: the predicted value on a training sample closer to the real one
 - Smaller difference between $h_\theta(x^{(i)})$ and $y^{(i)}$

- Cost function (objective function)

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2$$

- Error is a distance measure
- Square avoids the cancellation of positive and negative error
LMS Algorithm

- Least Mean Squares (LMS) aims to minimize $J(\theta)$ by adjusting θ

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2$$

- θ can be obtained by
 - Pseudoinverse Method (h_θ is linear)
 - Gradient Descent (h_θ is differentiable)

LMS Algorithm

Pseudoinverse Method

- When h_θ is linear, Pseudoinverse can be applied
- A sample and its outputs can be treated as an equation
 - i.e. For the ith samples: $\sum_{k=1}^{d} \theta_k x_k^{(i)} = y_i$

- n samples can be represented in matrix notation:

$$
\begin{pmatrix}
x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\
x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
x_1^{(n)} & x_2^{(n)} & \cdots & x_d^{(n)} \\
\end{pmatrix}
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_d \\
\end{pmatrix}
=
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n \\
\end{pmatrix}
$$

or

$$X^T \theta = y$$
LMS Algorithm

Pseudoinverse Method

- As $X^T \theta = y$, θ can be solved by calculating the inverse if X is nonsingular,
 $$\theta = (X^T)^{-1} y$$

- However, X^T is usually rectangular, $(X^T)^{-1}$ is undefined
 - More samples than features
 - More rows than columns
 - More equations than variables
 - θ is over-determined
 - No exact solution exists

Criterion Function (J)

Sum-of-squared-error Function

- $X^T \theta = y$

- Square Error:
 $$J(\theta) = (X^T \theta - y)^2$$
 $$\frac{\partial}{\partial \theta_j} J(\theta) = 2X(X^T \theta - y)$$

- When $\frac{\partial}{\partial \theta_j} J(\theta) = 0$
 $$XX^T \theta = Xy$$
 $$\theta = (XX^T)^{-1} Xy$$

- XX^T is not always nonsingular
- It should be defined more generally by
 $$\theta = \lim_{\varepsilon \to 0} (XX^T + \varepsilon I)^{-1} Xy$$
LMS Algorithm

Gradient Descent

- h_θ is differentiable, gradient descent can be used to minimize $J(\theta)$

\[J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

- Influence on $J(\theta)$ by changing the parameter (θ) slightly

\[\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{\partial}{\partial \theta} J(\theta^{(t)}) \]

 - α: the learning rate
 - $\theta^{(t)}$: the parameter at the t time

Algorithm

- Start with an arbitrarily chosen weight $\theta^{(1)}$
- Let $t = 0$
- Loop
 - $t = t + 1$
 - Compute gradient vector $\frac{\partial J(\theta^{(t)})}{\partial \theta}$
 - Next value $\theta^{(t+1)}$ determined by moving some distance from $\theta^{(t)}$ in the direction of the steepest descent

\[\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{\partial}{\partial \theta} J(\theta^{(t)}) \]

 - i.e., along the negative of the gradient
- Until Finish Training
LMS Algorithm

Gradient Descent

- Recall, \(\theta = [\theta_1, \theta_2, \ldots, \theta_m] \)
- Updated Rule for the jth parameter

\[
\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta_j^{(t)})
\]

- All parameters should be updated at the same time

How to calculate \(\frac{\partial}{\partial \theta_j} J(\theta) \)?

\[
J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

\[
\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

\[
= \frac{1}{2n} \sum_{i=1}^{n} \frac{\partial}{\partial \theta_j} (h_\theta(x^{(i)}) - y^{(i)})^2
\]

\[
= \frac{1}{2n} \sum_{i=1}^{n} 2(h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta_j} (h_\theta(x^{(i)}) - y^{(i)})
\]

\[
= \frac{1}{2n} \sum_{i=1}^{n} 2(h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial h_\theta(x^{(i)})}{\partial \theta_j}
\]
LMS Algorithm

Gradient Descent

- **Linear Function**
 \[h_\theta(x) = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_d x_d \]
 \[= \sum_{i=1}^{d} \theta_i x_i \]

 \[
 \frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} 2(h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial h_\theta(x^{(i)})}{\partial \theta_j} \\
 = \frac{1}{2n} \sum_{i=1}^{n} 2(h_\theta(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta_j} \left(\sum_{k=1}^{d} \theta_k x_k^{(i)} - y^{(i)} \right) \\
 = \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
 \]

Batch Gradient Descent

- Calculate the gradient for \(n \) samples, and update 1 time

\[
\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \\
\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}
\]

- Initialize \(\theta_j^{(1)} \), \(j = 1\ldots m \)
- \(t = 0 \)
- do
 - \(t = t + 1 \)
 - for \(j = 1\ldots m \)
 - \(\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \)
 - end for
- end do

All parameters are updated at the same time

\[
\boxed{\text{All samples, one update}}
\]
\[\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \]

\[\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \]

Stochastic Gradient Descent (Incremental Gradient Descent)
- Update by 1 sample each time
- Initialize \(\theta_j^{(1)} \), \(j = 1 \ldots m \)
- \(t = 0 \)
- do
 - \(t = t + 1 \)
 - \(i = \text{mod}(i, n) + 1 \)
 - for \(j = 1 \ldots m \)
 - \(\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha (h_\theta^{(t)}(x^{(i)}) - y^{(i)}) x_j^{(i)} \)
 - end for
- until The range of \(i = 1 \ldots n \)

One samples, one update

All parameters are updated at the same time

17 Dr. Patrick Chan @ SCUT

Batch Gradient Descent
- 1 update: \(n \) samples
- Time complexity of learning a dataset once is lower (1 update)
- One update is costly when \(n \) is large
- Mathematic proof on convergence but takes time

Stochastic Gradient Descent
- 1 update: 1 sample
- Time complexity of learning a dataset once is higher (\(n \) updates)
- Make a little progress every time
- May never converge but close to the minimum faster usually (good enough in practical)
Related Issues:

- **Size of Learning Rate (η)**
 - Too small, convergence is needlessly slow
 - Too large, the correction process will overshoot and cannot even diverge

- **Sub-optimal Solution**
 - Trapped by local minimum

Problems of Pseudoinverse:

- Problem of singularity
- Working with large matrices
- Only error can be considered

Problems of Gradient Descent

- Long training time
- Local minimum
Objective: output a class based on the features of a sample

Prior Probability

Peter went to body check to see if he is ok
\[y = \text{(ill, healthy)} \]

According to the previous records, the doctor concluded
- 85% of people was healthy
 \[P(y = \text{healthy}) = 0.85 \]
- 15% of people was ill
 \[P(y = \text{ill}) = 0.15 \]
- Therefore, Peter was healthy
 \[P(y = \text{healthy}) > P(y = \text{ill}) \]

Should Peter be satisfied with this diagnosis?
- This decision is based on Prior Probability \(P(y) \)

<table>
<thead>
<tr>
<th>Person</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ill</td>
</tr>
<tr>
<td>B</td>
<td>Healthy</td>
</tr>
<tr>
<td>C</td>
<td>Healthy</td>
</tr>
<tr>
<td>D</td>
<td>Ill</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
</tr>
</tbody>
</table>

Illustration: Hans Maller, mollers.dk
Physical condition of persons should be considered
- Quantify the characteristics (features), denoted by x
- E.g. red blood cell #, white blood cell #, temperature

Assume only white blood cell # is measured

<table>
<thead>
<tr>
<th>Person</th>
<th>White Blood Cell #</th>
<th>Status (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50</td>
<td>Ill</td>
</tr>
<tr>
<td>B</td>
<td>42</td>
<td>Healthy</td>
</tr>
<tr>
<td>C</td>
<td>39</td>
<td>Healthy</td>
</tr>
<tr>
<td>D</td>
<td>62</td>
<td>Ill</td>
</tr>
</tbody>
</table>

Assume the white blood cell # (x) of Peter is 2

A probability density function (pdf) of persons is considered

The Doctor said
- $p(x=2 \mid \text{ill}) = 0.67$
- $p(x=2 \mid \text{healthy}) = 0.05$
- Therefore, Peter is ill

Should we be satisfied?
- This decision is based on Likelihood $P(x \mid y)$
Classification

Posterior Probability

- Using Prior Probability (P(y)) or Likelihood (p(x|y)) is not suitable

- Posterior Probability is a better choice
 \[P(y | x) : \text{given } x, \text{the probability of } y \]

- Bayes Decision Rule (Bayes Classifier)
 - When \(P(y_1 | x) > P(y_2 | x) \), x is \(y_1 \)
 - When \(P(y_2 | x) > P(y_1 | x) \), x is \(y_2 \)
 - When \(P(y_1 | x) = P(y_2 | x) \), no decision

- How to calculate \(P(y | x) \)?
 - It is difficult as \(x \) is usually a continuous value

Bayes Formula

- Bayes Formula
 \[
 P(y|x) = \frac{p(x|y)P(y)}{p(x)}
 \]

 - Likelihood and prior probability may be estimated by using a dataset:
 \[
 p(x=2 \mid \text{ill}) = 0.67 \quad p(x=2 \mid \text{healthy}) = 0.05 \\
 P(\text{ill}) = 0.15 \quad P(\text{healthy}) = 0.85
 \]

- How about evidence \(p(x) \)?
Classification

Bayes Decision Rule

- \(p(x) \) is difficult to obtain
 - Fortunately, it can be neglected since it will not affect the decision

- \(x \) is classified as \(y_1 \) if
 \[
p(y_1|x) > p(y_2|x)
 \]
 \[
 \frac{p(x|y_1)p(y_1)}{p(x)} > \frac{p(x|y_2)p(y_2)}{p(x)}
 \]
 \[
p(x|y_1)p(y_1) > p(x|y_2)p(y_2)
 \]

Recall:
- \(p(x=2 | \text{ill}) = 0.67 \quad p(x=2 | \text{healthy}) = 0.05 \)
- \(P(\text{ill}) = 0.15 \quad P(\text{healthy}) = 0.85 \)

According to Bayes Decision Rule
- Decide \(y_1 \) if \(P(y_1|x) > P(y_2|x) \)
- Decide \(y_2 \) if \(P(y_2|x) > P(y_1|x) \)

- \(P(\text{healthy} | x = 2) \propto p(x=2 | \text{healthy}) \times P(\text{healthy}) \)
 \[
 = 0.05 \times 0.85 = 0.0425
 \]

- \(P(\text{ill} | x = 2) \propto p(x=2 | \text{ill}) \times P(\text{ill}) \)
 \[
 = 0.67 \times 0.15 = 0.1005
 \]
 * Note that if \(p(x) \) is considered, then \(P(y_1|x) + P(y_2|x) = 1 \).

- \(0.1005 > 0.0425 \), therefore, **Peter is ill**
Classification: Bayes Decision Rule

Maximum Likelihood Estimation

- When \(P(y_1) = P(y_2) \), the decision is based entirely on the likelihood (\(p(x \mid y_j) \))

\[
P(y \mid x) = \frac{p(x \mid y) P(y)}{p(x)}
\]

- Decide \(y_1 \) if \(p(x \mid y_1) > p(x \mid y_2) \)
- Decide \(y_2 \) if \(p(x \mid y_2) > p(x \mid y_1) \)

- MLE is a special case of Bayes Rule

Classification: Bayes Decision Rule

Decision Boundary

- Error is usually unavoidable
 - Samples with the same value may be ill or healthy
 - e.g. \(x = 3 \)
 - A classifier only can classify a sample to ONE class based on its value
 - A function

- But always can be minimized
 - Classify to the class with higher posterior probability
Classification: Bayes Decision Rule

Error Probability

- There are two possible errors:
 - Error Probability ($P(\text{error} \mid x)$) is
 - $P(y_1 \mid x)$ if y_2 is chosen
 - $P(y_2 \mid x)$ if y_1 is chosen

Recall the Bayes Decision Rule:
- if $P(y_1 \mid x) > P(y_2 \mid x)$, decide y_1
- Otherwise decide y_2

Error: $P(\text{error} \mid x) = \min \left[P(y_1 \mid x), P(y_2 \mid x) \right]$
Classification: Bayes Decision Rule: Error Probability

Bayes & Added Error

\[P(error) = P(x \in R_2, y_1) + P(x \in R_1, y_2) \]
\[= P(x \in R_2 | y_1)P(y_1) + P(x \in R_1 | y_2)P(y_2) \]
\[= \int_{R_2} p(x|y_1)P(y_1)dx + \int_{R_1} p(x|y_2)P(y_2)dx \]

Error

\[= \text{Bayes Error} + \text{Added Error} \]

Cannot be reduced for this input space
Can be reduced by choosing better parameters

Extension to Multi-Class

- Extend to multi-class problem \((c\ classes)\)

\[y = (y_1, y_2, \ldots, y_c) \]

- Bayes Decision Rule

 \[x \text{ is } y_i \text{ if } P(y_i | x) \text{ is maximum for } i = 1...c \]

- Error for Bayes Decision Rule

\[P(error \mid x) = 1 - \max[P(y_1 | x), P(y_2 | x), \ldots, P(y_c | x)] \]
A three-class example:

- Bayes Decision Rule
 - \(x \) is \(y_i \) if \(P(y_i | x) \) is max for \(i = 1 \ldots 3 \)

\[
P(y_1 | x) \text{ is max} \\
P(y_2 | x) \text{ is max} \\
P(y_3 | x) \text{ is max}
\]

Error of Bayes Decision Rule:

\[
P(error | x) = 1 - \max[P(y_1|x), P(y_2|x), P(y_3|x)]
\]

For example, in the green region,
(x is classified as \(y_2 \) based on Bayes Rule)

\[
P(error | x) = P(y_1 | x) + P(y_3 | x)
= 1 - P(y_2 | x)
= 1 - \max_{i=1,2,3} P(y_i | x) \quad * \text{Must not be } P(y_2|x)
\]
Classification: Bayes Decision Rule

Action Cost

- Considering Posterior Probability only minimizes the error rate but **not the cost of different error**

- In some applications, the cost of taking each action when a sample belongs to different classes should be considered

- E.g.
 - Send a healthy person to a hospital
 - Send a sick person to home

Let $\lambda_{ij} = \lambda(a_i | y_j)$ be the cost of taking the action a_i when the class is y_j

- $\lambda_{ii} > \lambda_{ij}$ for any i and j

<table>
<thead>
<tr>
<th>Action</th>
<th>Class</th>
<th>Action</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send to Hospital (a_1)</td>
<td>ill (y_1)</td>
<td>Send a patient to hospital</td>
<td>$\lambda_{11} = \lambda(a_1</td>
</tr>
<tr>
<td>Send to home (a_2)</td>
<td>healthy (y_2)</td>
<td>Send a healthy person to hospital</td>
<td>$\lambda_{12} = \lambda(a_1</td>
</tr>
</tbody>
</table>
Action Cost

- **Expected loss** for an action a_i risk on x:

$$R(a_i|x) = \sum_{j=1}^{c} \lambda(a_i|y_j)P(y_j|x)$$

 - Loss of taking action a_i
 - Probability of classifying as y_j given x

- **Overall risk** R (expected loss)

$$R = \int R(a(x)|x)p(x)dx$$

- For example, a two-class problem:

 $$R(a_1|x) = \lambda_{11}P(y_1|x) + \lambda_{12}P(y_2|x)$$
 $$R(a_2|x) = \lambda_{21}P(y_1|x) + \lambda_{22}P(y_2|x)$$

Minimum Risk Decision Rule

- **Select** a_i with the minimum $R(a_i|x)$

 $$\min R(a_i|x) \text{ for } i = 1, \ldots, c$$

- For a two-class problem:

 - Decide a_1 if $R(a_1|x) < R(a_2|x)$
 - otherwise decide a_2
Example:

- \(\lambda_{11} = 1 \quad \lambda_{21} = 10 \)
- \(\lambda_{12} = 5 \quad \lambda_{22} = 3 \)

When \(P(y_1 | x) = 0.1 \) and \(P(y_2 | x) = 0.9 \):

- \(R(a_1 | x) = 1 \times 0.1 + 5 \times 0.9 = 4.6 \)
- \(R(a_2 | x) = 10 \times 0.1 + 3 \times 0.9 = 3.7 \)
- Action 2 \((a_2) \) is selected

When \(P(y_1 | x) = 0.8 \) and \(P(y_2 | x) = 0.2 \):

- \(R(a_1 | x) = 1 \times 0.8 + 5 \times 0.2 = 1.8 \)
- \(R(a_2 | x) = 10 \times 0.8 + 3 \times 0.2 = 8.6 \)
- Action 1 \((a_1) \) is selected

\[R(a_i | x) = \sum_{j=1}^{c} \lambda(a_i | y_j) P(y_j | x) \]

Minimize the risk \(R(a_i | x) \) requires maximizing the posterior probability \(P(y_i | x) \)

For example, a 2-class problem, if we take action 1,

\[
R(a_1 | x) = \lambda_{11} P(y_1 | x) + \lambda_{12} P(y_2 | x) \\
= \lambda_{11} P(y_1 | x) + \lambda_{12} (1 - P(y_1 | x)) \\
= (\lambda_{11} - \lambda_{12}) P(y_1 | x) + \lambda_{12}
\]

- \(\lambda_{11} \) and \(\lambda_{12} \) are given, and \(\lambda_{11} < \lambda_{12} \) \((\lambda_{11} - \lambda_{12})\) is negative.
- \(R(a_1 | x) \) is minimal if \(P(y_1 | x) \) is maximal (i.e. \(P(y_2 | x) \) is minimal)
Classification: Bayes Decision Rule: Action Cost
Minimum Risk Decision Rule

- **Special case: Zero-one loss function**
 - No loss if taking a_i for x_i in y_i
 - Otherwise Loss is 1

$$\lambda_{ij} = \begin{cases}
0 & i = j \\
1 & i \neq j
\end{cases}$$

$$R(a_i | x) = \sum_{j=1}^{c} \lambda(a_i | y_j) P(y_j | x)$$

$$= \sum_{j \neq i} P(y_j | x)$$

$$= 1 - P(y_i | x)$$

- Equivalent to Bayes Rule

- **Example: 2-class problem**
 - a_1 is chosen if $R(a_1 | x) < R(a_2 | x)$
 - Otherwise, a_2 is chosen

$$R(a_1 | x) < R(a_2 | x)$$

$$\lambda_{11}P(y_1 | x) + \lambda_{12}P(y_2 | x) < \lambda_{21}P(y_1 | x) + \lambda_{22}P(y_2 | x)$$

$$\lambda_{12} - \lambda_{22} < \frac{P(x | y_1)P(y_1)}{P(x | y_2)P(y_2)}$$

Rely on λ

Rely on the distribution
Classification: Bayes Decision Rule: Action Cost

Minimum Risk Decision Rule

\[\theta_\lambda = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} < \frac{p(x|y_1)P(y_1)}{p(x|y_2)P(y_2)} \]

Zero-one loss function (Bayes Rule)

\[\lambda_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \theta_{\lambda_0} = 1 \]

Another loss function

\[\lambda_\alpha = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \quad \theta_{\lambda_\alpha} = 2 \]

Loss(Taking \(a_2 \) when \(y_1 \)) >
Loss(Taking \(a_1 \) when \(y_2 \))

Loss(Classify as \(y_2 \) when \(y_1 \)) >
Loss(Classify as \(y_1 \) when \(y_2 \))

Reduce to chance of predicting \(y_1 \)

Learning Type

- Two types of learning method:
 - **Parametric Methods**
 - Assume the form of sample distribution (pdf) is known, E.g. Gaussian distribution
 - Estimate parameters of the distribution
 - Bias (Good if the assumption is correct)
 - **Non-Parametric Methods**
 - No assumption on pdf
 - Instead, the proper form for discriminant function is assumed
 - Usually sub-optimal, but good results generally